Skip to content

Nuface Blog

้šจๆ„้šจๆ‰‹่จ˜ Casual Notes

Menu
  • Home
  • About
  • Services
  • Blog
  • Contact
  • Privacy Policy
  • Login
Menu

Practical Integration of Ceph with DeepSeek and RAG Architectures

Posted on 2025-11-012025-11-01 by Rico

๐Ÿ”ฐ Introduction

When deploying AI assistants, document-based Q&A, or RAG systems inside an enterprise,
the biggest challenge is often not the model itself โ€” but the data infrastructure that feeds it.

Ensuring that enterprise documents, datasets, embeddings, and model checkpoints are:

  • continuously updated,
  • securely isolated,
  • efficiently retrievable, and
  • consistently accessible

is what separates a prototype from a production-grade AI system.

This is precisely where Ceph plays a crucial role.
By integrating Cephโ€™s distributed storage platform with DeepSeek and RAG pipelines,
organizations can build a scalable, high-performance, and private AI knowledge infrastructure.


๐Ÿงฉ 1. RAG Architecture Overview and Data Flow

RAG (Retrieval-Augmented Generation) combines document retrieval and language generation,
allowing LLMs to generate responses grounded in factual, enterprise-specific data.

The typical workflow looks like this:

User Query โ†’ Vector Retrieval โ†’ Fetch Relevant Documents โ†’ Pass to LLM โ†’ Generate Response

Key data types involved include:

Data TypeDescriptionRecommended Ceph Module
Source DocumentsPDFs, Word files, emails, reportsCephFS / RGW
Vector DataEmbeddings and index metadataRBD / Object Pool
Model WeightsDeepSeek / LLM checkpointsRBD
Training & LogsDatasets, fine-tuning logs, metricsCephFS

โš™๏ธ 2. Cephโ€™s Role within a RAG Stack

Ceph provides a three-layered foundation for RAG and AI infrastructure:

LayerFunctionCeph Component
Data LayerFile storage for documents and datasetsCephFS / RGW
Vector LayerEmbedding and index storageRBD / Object Pool
Model LayerModel weights, checkpoints, fine-tuned outputsRBD

Key Advantages

  • High Availability through replication and self-healing
  • Multi-protocol access (S3, POSIX, Block)
  • Unified namespace shared across AI services
  • Horizontal scalability from terabytes to petabytes

โ˜๏ธ 3. Example: DeepSeek + Ceph Integration in a Private RAG System

        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
        โ”‚     User / Web Interface     โ”‚
        โ”‚ (Chatbot / API / Dashboard)  โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                       โ”‚
                       โ–ผ
             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
             โ”‚   RAG Application  โ”‚
             โ”‚ (Retriever + LLM)  โ”‚
             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ”‚
         โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
         โ”‚                                 โ”‚
         โ–ผ                                 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Vector Database   โ”‚          โ”‚  Model Inference Node  โ”‚
โ”‚ (Milvus / FAISS /  โ”‚          โ”‚ (DeepSeek / Llama / etc.)โ”‚
โ”‚  Chroma / Manticore)โ”‚         โ”‚ Reads model from RBD    โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ”‚                                 โ”‚
           โ–ผ                                 โ–ผ
  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
  โ”‚ CephFS / RGW Data  โ”‚        โ”‚   Ceph RBD Model Pool  โ”‚
  โ”‚ (PDF, DOCX, HTML)  โ”‚        โ”‚ (Weights, Checkpoints) โ”‚
  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

In this architecture:

  • CephFS / RGW hosts raw and processed documents for embedding.
  • RBD Pool stores DeepSeek or other LLM weight files and tokenizer data.
  • Vector DB (e.g., Manticore or Milvus) stores embeddings on Ceph-backed volumes.
  • RAG layer retrieves context directly from Ceph storage during runtime.

๐Ÿง  4. Integrating DeepSeek Models and Ceph Storage

1๏ธโƒฃ Model Storage

DeepSeek models usually include:

  • .safetensors weight files
  • tokenizer.json / vocab.txt
  • config.json

These can be stored on Ceph RBD volumes or RGW object pools:

rbd create deepseek-r1 --size 500G --pool ai-models
rbd map deepseek-r1
mount /dev/rbd0 /mnt/deepseek-model

2๏ธโƒฃ Vector Data Integration

Embedding indexes and metadata can be persisted in Ceph in two ways:

  • Directly on RBD volumes (block-based storage)
  • Or via RGW Object Storage using S3 API integration

Example (Milvus or Manticore config):

storage:
  type: s3
  endpoint: http://rgw.nuface.ai:7480
  bucket: vector-index
  access_key: AI_STORAGE
  secret_key: *******

โšก 5. Benefits of Using Ceph for RAG and DeepSeek

AdvantageDescription
Unified storage fabricModels, documents, embeddings, and logs share the same Ceph cluster
Horizontal scalabilityScales from TB to PB with linear performance growth
High availabilitySelf-healing replication and fault tolerance
Low total costOpen-source, hardware-agnostic deployment
API flexibilitySupports S3, POSIX, and RBD simultaneously
Data isolation and securityTenant separation, CephX auth, and token access supported

๐Ÿงฉ 6. Example Deployment: Proxmox + Ceph + DeepSeek

ComponentRoleExample Setup
Proxmox VE ClusterCompute and container orchestration3-node cluster
Ceph ClusterDistributed storage backend5 OSD nodes + MON/MGR
DeepSeek ContainerModel inference / fine-tuningDocker + GPU
Manticore SearchVector retrieval engineShared Ceph volume backend
PBS (Proxmox Backup Server)Dataset & model backupMounted CephFS as datastore

This integration allows DeepSeek, vector DBs, and backup systems to run on a single unified Ceph infrastructure โ€”
reducing complexity and improving resilience.


๐Ÿ”’ 7. Security and Governance Recommendations

1๏ธโƒฃ Use CephX or token-based authentication for all AI workloads.
2๏ธโƒฃ Enable multi-tenant isolation in RGW for different data domains.
3๏ธโƒฃ Encrypt vector data at rest with RBD or RGW encryption.
4๏ธโƒฃ Integrate Prometheus + Alertmanager for monitoring and I/O alerts.
5๏ธโƒฃ Schedule PBS / RBD snapshots for periodic model and index backups.


โœ… Conclusion

In modern enterprise RAG and LLM architectures,
Ceph is far more than a storage system โ€” it is the backbone of AI knowledge infrastructure.

By combining:

  • Cephโ€™s distributed scalability,
  • DeepSeekโ€™s inference and training power, and
  • vector search frameworks like Manticore or Milvus,

enterprises can build:

๐ŸŒ A private, secure, and scalable AI knowledge platform
โš™๏ธ Supporting LLM, RAG, document QA, and enterprise knowledge management

๐Ÿ’ฌ Coming next:
โ€œDesigning an Enterprise AI Cloud Data Platform Powered by Cephโ€ โ€”
exploring how open-source storage and governance frameworks
enable long-term, sustainable AI infrastructure for global organizations.

Recent Posts

  • Postfix + Letโ€™s Encrypt + BIND9 + DANE Fully Automated TLSA Update Guide
  • Postfix + Letโ€™s Encrypt + BIND9 + DANE TLSA ๆŒ‡็ด‹่‡ชๅ‹•ๆ›ดๆ–ฐๅฎŒๆ•ดๆ•™ๅญธ
  • Deploying DANE in Postfix
  • ๅฆ‚ไฝ•ๅœจ Postfix ไธญ้ƒจ็ฝฒ DANE
  • DANE: DNSSEC-Based TLS Protection

Recent Comments

  1. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on High Availability Architecture, Failover, GeoDNS, Monitoring, and Email Abuse Automation (SOAR)
  2. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on MariaDB + PostfixAdmin: The Core of Virtual Domain & Mailbox Management
  3. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Daily Operations, Monitoring, and Performance Tuning for an Enterprise Mail System
  4. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Final Chapter: Complete Troubleshooting Guide & Frequently Asked Questions (FAQ)
  5. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Network Architecture, DNS Configuration, TLS Design, and Postfix/Dovecot SNI Explained

Archives

  • December 2025
  • November 2025
  • October 2025

Categories

  • AI
  • Apache
  • Cybersecurity
  • Database
  • DNS
  • Docker
  • Fail2Ban
  • FileSystem
  • Firewall
  • Linux
  • LLM
  • Mail
  • N8N
  • OpenLdap
  • OPNsense
  • PHP
  • QoS
  • Samba
  • Switch
  • Virtualization
  • VPN
  • WordPress
© 2025 Nuface Blog | Powered by Superbs Personal Blog theme