Skip to content

Nuface Blog

้šจๆ„้šจๆ‰‹่จ˜ Casual Notes

Menu
  • Home
  • About
  • Services
  • Blog
  • Contact
  • Privacy Policy
  • Login
Menu

Designing an Enterprise AI Cloud Data Platform Powered by Ceph

Posted on 2025-11-012025-11-01 by Rico

๐Ÿ”ฐ Introduction

As generative AI, big data analytics, and automation reshape enterprise strategy,
the design of data infrastructure has evolved beyond traditional centralized storage.

Legacy systems separate data by function โ€”

  • Databases handle structured data,
  • NAS stores files,
  • Object storage manages backups or cold data.

However, in the AI-driven era, this model no longer fits.
Organizations now require an architecture that supports training, retrieval, governance, and hybrid cloud scalability โ€” all under one framework.

Ceph, with its open-source, unified, and horizontally scalable architecture,
has become the ideal foundation for building an Enterprise AI Cloud Data Platform.


๐Ÿงฉ 1. Why Ceph is the Core of an AI Cloud Data Platform

Ceph is not merely a storage system โ€” it is a distributed data fabric.
It provides three complementary storage modes within a single cluster:

ModuleFunctionUse Case
RBD (Block Storage)High-performance virtual disksVMs, containers, model training
CephFS (File Storage)Distributed POSIX file systemAI datasets, collaborative environments
RGW (Object Storage)S3-compatible API interfaceData lakes, archives, cross-cloud sync

This tri-layer model forms a unified backbone capable of supporting every data flow in enterprise AI โ€”
from ingestion to model training and from analytics to archiving.


โ˜๏ธ 2. Architecture Overview: Enterprise AI Cloud Data Platform

๐Ÿ”น System Design Overview

                        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                        โ”‚     Enterprise Applications โ”‚
                        โ”‚  (AI / BI / RAG / ERP / CRM)โ”‚
                        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
                         โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                         โ”‚   Application Layer   โ”‚
                         โ”‚ LLM / RAG / MLOps     โ”‚
                         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
                  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                  โ”‚          Data Services Layer       โ”‚
                  โ”‚ Vector DB / ETL / Data Catalog     โ”‚
                  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
               โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
               โ”‚          Ceph Unified Storage           โ”‚
               โ”‚โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”‚
               โ”‚  RGW โ†’ Object Data (Data Lake)          โ”‚
               โ”‚  CephFS โ†’ Shared AI Datasets            โ”‚
               โ”‚  RBD โ†’ Model Training / Inference       โ”‚
               โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
                       โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                       โ”‚  Physical / Cloud Infra โ”‚
                       โ”‚ On-Prem + Public Cloud  โ”‚
                       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

In this architecture, Ceph acts as the central data hub,
bridging upper-layer AI applications and lower-layer compute and network resources.

It enables:

  • Unified data pool management
  • Multi-cloud data sharing
  • Centralized governance for models and datasets

โš™๏ธ 3. Core Components and Integration Highlights

1๏ธโƒฃ AI Training & Inference Layer (RBD + CephFS)

  • RBD provides high I/O performance for GPU training nodes.
  • CephFS serves as a shared workspace for datasets and experiments.
  • Compatible with TensorFlow, PyTorch, and DeepSeek frameworks via direct mounting.

2๏ธโƒฃ Data Lake Layer (RGW)

  • RGW exposes an S3-compatible API for integration with Spark, Airflow, Hadoop, or MinIO.
  • Acts as the central repository for raw and processed data.

3๏ธโƒฃ Knowledge Retrieval and RAG Layer

  • Vector databases (Milvus, Manticore, FAISS) connect via RBD or RGW object pools.
  • Support embedding, indexing, and semantic retrieval for enterprise LLM systems.

4๏ธโƒฃ Data Governance and Monitoring

  • Prometheus + Grafana: Real-time monitoring of IOPS, latency, and usage.
  • Ceph Dashboard + Alertmanager: Centralized visualization and alerting.
  • API-driven control for automated scaling, provisioning, and governance.

๐Ÿง  4. Governance, Security, and Compliance Framework

An enterprise AI data platform must balance openness and control.
Cephโ€™s built-in governance mechanisms provide a strong foundation:

AspectDescription
Multi-tenancySeparate RGW zones and users for departmental data isolation
AuthenticationCephX and S3 token authentication for secure access
EncryptionRBD encryption and TLS for data-at-rest and in-transit protection
Audit LoggingTrack operations via RGW logs and Ceph telemetry
Disaster RecoveryRBD Mirror and RGW Multi-Site ensure cross-site availability

โšก 5. Hybrid and Multi-Cloud Design

Ceph natively supports multi-site replication and hybrid deployment,
allowing enterprises to balance cost, latency, and compliance.

EnvironmentRoleFunction
On-Prem Data CenterPrimary clusterAI training and daily operations
Public Cloud NodeReplica clusterElastic compute and inference
Disaster Recovery SiteMirror siteRBD Mirror + RGW Multi-Site backup

This enables:

โ˜๏ธ โ€œLocal data control, global scalability, and consistent governance.โ€


๐Ÿ’ฐ 6. Cost Efficiency and Scalability Strategy

Cost CategoryCeph Advantage
Licensing100% open-source, no vendor lock-in
HardwareDeploy on commodity x86 or ARM servers
Storage ExpansionPlug-and-grow scalability with linear performance
ManagementUnified Web GUI, CLI, and API management
Total Cost of Ownership (TCO)Typically 40% lower than SAN/NAS systems

๐Ÿ”’ 7. Enterprise Integration and Use Cases

ApplicationIntegrationBenefit
ERP / EIP / SAPStore reports and documents via RGW (S3 API)Increased data persistence
RAG / AI AssistantIntegrate CephFS + Vector DBAutomated enterprise knowledge retrieval
Moodle / LMS PlatformCephFS as course content storageReliable and scalable file management
VDI / Dev EnvironmentsRBD-based virtual disksRapid provisioning and rollback support

โœ… Conclusion

In the age of AI transformation,
the architecture of a companyโ€™s data platform defines its ability to innovate and sustain growth.

A Ceph-powered enterprise data platform delivers:

  • High-performance AI training and inference
  • Consistent, secure RAG knowledge systems
  • Seamless hybrid and multi-cloud scalability

๐ŸŒ Ceph is not just a storage engine โ€”
it is the core nervous system of the enterprise AI ecosystem,
connecting data, models, applications, and cloud environments into one unified, intelligent foundation.

Recent Posts

  • Postfix + Letโ€™s Encrypt + BIND9 + DANE Fully Automated TLSA Update Guide
  • Postfix + Letโ€™s Encrypt + BIND9 + DANE TLSA ๆŒ‡็ด‹่‡ชๅ‹•ๆ›ดๆ–ฐๅฎŒๆ•ดๆ•™ๅญธ
  • Deploying DANE in Postfix
  • ๅฆ‚ไฝ•ๅœจ Postfix ไธญ้ƒจ็ฝฒ DANE
  • DANE: DNSSEC-Based TLS Protection

Recent Comments

  1. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on High Availability Architecture, Failover, GeoDNS, Monitoring, and Email Abuse Automation (SOAR)
  2. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on MariaDB + PostfixAdmin: The Core of Virtual Domain & Mailbox Management
  3. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Daily Operations, Monitoring, and Performance Tuning for an Enterprise Mail System
  4. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Final Chapter: Complete Troubleshooting Guide & Frequently Asked Questions (FAQ)
  5. Building a Complete Enterprise-Grade Mail System (Overview) - Nuface Blog on Network Architecture, DNS Configuration, TLS Design, and Postfix/Dovecot SNI Explained

Archives

  • December 2025
  • November 2025
  • October 2025

Categories

  • AI
  • Apache
  • Cybersecurity
  • Database
  • DNS
  • Docker
  • Fail2Ban
  • FileSystem
  • Firewall
  • Linux
  • LLM
  • Mail
  • N8N
  • OpenLdap
  • OPNsense
  • PHP
  • QoS
  • Samba
  • Switch
  • Virtualization
  • VPN
  • WordPress
© 2025 Nuface Blog | Powered by Superbs Personal Blog theme