๐ฐ Introduction
When deploying AI assistants, document-based Q&A, or RAG systems inside an enterprise,
the biggest challenge is often not the model itself โ but the data infrastructure that feeds it.
Ensuring that enterprise documents, datasets, embeddings, and model checkpoints are:
- continuously updated,
- securely isolated,
- efficiently retrievable, and
- consistently accessible
is what separates a prototype from a production-grade AI system.
This is precisely where Ceph plays a crucial role.
By integrating Cephโs distributed storage platform with DeepSeek and RAG pipelines,
organizations can build a scalable, high-performance, and private AI knowledge infrastructure.
๐งฉ 1. RAG Architecture Overview and Data Flow
RAG (Retrieval-Augmented Generation) combines document retrieval and language generation,
allowing LLMs to generate responses grounded in factual, enterprise-specific data.
The typical workflow looks like this:
User Query โ Vector Retrieval โ Fetch Relevant Documents โ Pass to LLM โ Generate Response
Key data types involved include:
| Data Type | Description | Recommended Ceph Module |
|---|---|---|
| Source Documents | PDFs, Word files, emails, reports | CephFS / RGW |
| Vector Data | Embeddings and index metadata | RBD / Object Pool |
| Model Weights | DeepSeek / LLM checkpoints | RBD |
| Training & Logs | Datasets, fine-tuning logs, metrics | CephFS |
โ๏ธ 2. Cephโs Role within a RAG Stack
Ceph provides a three-layered foundation for RAG and AI infrastructure:
| Layer | Function | Ceph Component |
|---|---|---|
| Data Layer | File storage for documents and datasets | CephFS / RGW |
| Vector Layer | Embedding and index storage | RBD / Object Pool |
| Model Layer | Model weights, checkpoints, fine-tuned outputs | RBD |
Key Advantages
- High Availability through replication and self-healing
- Multi-protocol access (S3, POSIX, Block)
- Unified namespace shared across AI services
- Horizontal scalability from terabytes to petabytes
โ๏ธ 3. Example: DeepSeek + Ceph Integration in a Private RAG System
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ User / Web Interface โ
โ (Chatbot / API / Dashboard) โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโ
โ RAG Application โ
โ (Retriever + LLM) โ
โโโโโโโโโโโโโโฌโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโ
โ โ
โผ โผ
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Vector Database โ โ Model Inference Node โ
โ (Milvus / FAISS / โ โ (DeepSeek / Llama / etc.)โ
โ Chroma / Manticore)โ โ Reads model from RBD โ
โโโโโโโโโโโโฌโโโโโโโโโโโ โโโโโโโโโโโโฌโโโโโโโโโโโโโโ
โ โ
โผ โผ
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโ
โ CephFS / RGW Data โ โ Ceph RBD Model Pool โ
โ (PDF, DOCX, HTML) โ โ (Weights, Checkpoints) โ
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโ
In this architecture:
- CephFS / RGW hosts raw and processed documents for embedding.
- RBD Pool stores DeepSeek or other LLM weight files and tokenizer data.
- Vector DB (e.g., Manticore or Milvus) stores embeddings on Ceph-backed volumes.
- RAG layer retrieves context directly from Ceph storage during runtime.
๐ง 4. Integrating DeepSeek Models and Ceph Storage
1๏ธโฃ Model Storage
DeepSeek models usually include:
.safetensorsweight filestokenizer.json/vocab.txtconfig.json
These can be stored on Ceph RBD volumes or RGW object pools:
rbd create deepseek-r1 --size 500G --pool ai-models
rbd map deepseek-r1
mount /dev/rbd0 /mnt/deepseek-model
2๏ธโฃ Vector Data Integration
Embedding indexes and metadata can be persisted in Ceph in two ways:
- Directly on RBD volumes (block-based storage)
- Or via RGW Object Storage using S3 API integration
Example (Milvus or Manticore config):
storage:
type: s3
endpoint: http://rgw.nuface.ai:7480
bucket: vector-index
access_key: AI_STORAGE
secret_key: *******
โก 5. Benefits of Using Ceph for RAG and DeepSeek
| Advantage | Description |
|---|---|
| Unified storage fabric | Models, documents, embeddings, and logs share the same Ceph cluster |
| Horizontal scalability | Scales from TB to PB with linear performance growth |
| High availability | Self-healing replication and fault tolerance |
| Low total cost | Open-source, hardware-agnostic deployment |
| API flexibility | Supports S3, POSIX, and RBD simultaneously |
| Data isolation and security | Tenant separation, CephX auth, and token access supported |
๐งฉ 6. Example Deployment: Proxmox + Ceph + DeepSeek
| Component | Role | Example Setup |
|---|---|---|
| Proxmox VE Cluster | Compute and container orchestration | 3-node cluster |
| Ceph Cluster | Distributed storage backend | 5 OSD nodes + MON/MGR |
| DeepSeek Container | Model inference / fine-tuning | Docker + GPU |
| Manticore Search | Vector retrieval engine | Shared Ceph volume backend |
| PBS (Proxmox Backup Server) | Dataset & model backup | Mounted CephFS as datastore |
This integration allows DeepSeek, vector DBs, and backup systems to run on a single unified Ceph infrastructure โ
reducing complexity and improving resilience.
๐ 7. Security and Governance Recommendations
1๏ธโฃ Use CephX or token-based authentication for all AI workloads.
2๏ธโฃ Enable multi-tenant isolation in RGW for different data domains.
3๏ธโฃ Encrypt vector data at rest with RBD or RGW encryption.
4๏ธโฃ Integrate Prometheus + Alertmanager for monitoring and I/O alerts.
5๏ธโฃ Schedule PBS / RBD snapshots for periodic model and index backups.
โ Conclusion
In modern enterprise RAG and LLM architectures,
Ceph is far more than a storage system โ it is the backbone of AI knowledge infrastructure.
By combining:
- Cephโs distributed scalability,
- DeepSeekโs inference and training power, and
- vector search frameworks like Manticore or Milvus,
enterprises can build:
๐ A private, secure, and scalable AI knowledge platform
โ๏ธ Supporting LLM, RAG, document QA, and enterprise knowledge management
๐ฌ Coming next:
โDesigning an Enterprise AI Cloud Data Platform Powered by Cephโ โ
exploring how open-source storage and governance frameworks
enable long-term, sustainable AI infrastructure for global organizations.